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We consider a damped quintic oscillator with double-well and triple-well potentials driven by both

low-frequency force f cos vt and high-frequency force g cos Vt with V@v and analyze the oc-

currence of vibrational resonance. The response consists of a slow motion with frequency v and a

fast motion with frequency V. We obtain an approximate analytical expression for the response

amplitude Q at the low-frequency v. From the analytical expression of Q, we determine the values

of v and g sdenoted as vVR and gVRd at which vibrational resonance occurs. The theoretical
predictions are found to be in good agreement with numerical results. We show that for fixed values

of the parameters of the system, as v varies, resonance occurs at most one value of v. When the

amplitude g is varied we found two and four resonances in the system with double-well and

triple-well cases, respectively. We present examples of resonance sid without cross-well motion and
siid with cross-well orbit far before and far after it. vVR depends on the damping strength d while

gVR is independent of d. Moreover, the effect of d is found to decrease the response amplitude Q.

© 2009 American Institute of Physics. fdoi:10.1063/1.3272207g

The study of nonlinear systems subjected to external pe-

riodic force and noise led to several fascinating phenom-

ena. Stochastic resonance
1

is one such phenomenon in

which an enhancement of amplitude of signal is observed

at an optimum noise intensity. It has been shown both

theoretically and experimentally that amplification of re-

sponse can be achieved when noise is replaced by a high-

frequency periodic force, and the associated effect is

called vibrational resonance.
2

The analysis of vibrational

resonance has received a considerable interest in recent

years because of its wide variety of applications, like the

stochastic resonance, in engineering and science, deter-

ministic in behavior and relatively easier than tuning a

noise source. From both theoretical and practical stand-

points, it is of great importance to obtain an analytical

estimate of control parameters at which vibrational reso-

nance occurs and analyze its features in a variety of non-

linear systems. In the present work, we report our study

on vibrational resonance in a double- and a triple-well

damped quintic oscillator. From the theoretical expres-

sion of the response amplitude we determine the values of

the control parameters at which vibrational resonance

occurs without calculating the response amplitude. The

system is found to exhibit single and multiple resonances.

The condition for vibrational resonance is discussed.

I. INTRODUCTION

The vibrational resonance phenomenon has been found

in the double-well Duffing oscillator,
2–4
spatially extended,

5

excitable
6
systems, an overdamped bistable system,

7–9
and

overdamped two-coupled anharmonic oscillators.
10,11

The ef-

fects of noise on vibrational resonance have also been ana-

lyzed in certain systems.
7,12,13

Experimental evidence of vi-

brational resonance was found in a bistable vertical cavity

surface emitting laser
13
and an optical system.

14
In a diode

laser and logistic map the high-frequency force was found to

induce noise-free stochastic resonance in an intermittency

region.
15
In overdamped bistable systems the signal-to-noise

ratio sSNRd profile in stochastic resonance and the response
amplitude profile in vibrational resonance are found to be

similar. In the stochastic resonance SNR is found to be maxi-

mum when there is a synchronization between the input pe-

riodic signal and the random switching events induced by the

external noise. Vibrational resonance is associated with the

crossing of a barrier in bistable systems with periodic switch-

ing between two states. Further, at the resonance, bifurcation

of effective potential of slow motion of the system is found.

It is important to investigate the mechanism of vibrational

resonance in different kinds of systems and explore the pos-

sibility of obtaining an analytical expression for the values of

a control parameter at which vibrational resonance occurs.

In the present work, we consider the damped quintic

oscillator with double-well and triple-well potentials and

analyze the occurrence of vibrational resonance. The equa-

tion of motion of the quintic oscillator driven by two peri-

odic forces is given by

ẍ + dẋ + v0
2x + bx3 + gx5 = f cos vt + g cos Vt , s1d

where V@v and the potential of the system in the absence

of damping and external force is

Vsxd = 1

2v0
2x2 +

1

4bx4 +
1

6gx6. s2d

Recently, in the quintic oscillator, routes to chaos,
16
resonant

and nonresonant oscillations using multiple-scale perturba-

tion theory,
17,18

evolution of basin of attraction with the

variation in parameters of the potential function,
19
occur-ad
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rence of horseshoe chaos and various bifurcation patterns,
20

chaotic dynamics with parametric excitation,
21
and the effect

of linear feedback and parametric perturbation on the ampli-

tude of oscillation and chaotic escape
22
have been studied. In

the overdamped version of system s1d stochastic resonance23

and splitting of Kramers escape rate
24
were analyzed. Pollak

and Talkner
25
calculated Kramers rate in the triple-well case

of the quintic oscillator. Rab et al.
26
studied tunneling of a

dilute gas Bose–Einstein condensate in a triple-well system.

The effect of time delay in the overdamped quintic oscillator

in the presence of additive and multiplicative noises has been

analyzed by Jia.
27
The occurrence of chaos has been studied

in the parametrically driven triple-well system.
28

In the system s1d we show the occurrence of single and
multiple resonances and through a theoretical approximation

we determine the values of the control parameters v, g, and

V at which the vibrational resonance occurs. The plan of the

paper is as follows. For V@v the solution of the system s1d
consists of a slow motion Xstd and a fast motion cst ,Vtd
with frequencies v and V, respectively. We obtain the equa-

tion of motion for the slow motion and an approximate ana-

lytical expression for the response amplitude Q of the low-

frequency svd output oscillation in Sec. II. Using this

theoretical expression of Q, in Sec. III, we analyze the oc-

currence of vibrational resonance in the system s1d with a
double-well form of the potential fFig. 1sadg. We obtain the
analytical expressions of the control parameters v, g, and V

at which vibrational resonance occurs. Resonance is ob-

served even in the absence of cross-well motion. We show

that at most only one resonance occurs when the parameter v

is varied. On the other hand, when g is varied, double reso-

nance is observed. In Sec. IV, for the triple-well case fFig.
1sbdg we determine the intervals of v and the values of g at

which two, three, and four resonances occur and verify the

theoretical prediction with numerical simulation. Finally,

Sec. V contains the conclusion.

II. THEORETICAL DESCRIPTION OF VIBRATIONAL
RESONANCE

For V@v we assume that the solution of Eq. s1d con-
sists of a slow motion Xstd with period 2p /v and a fast

motion cst ,Vtd with period 2p /V sor period 2p in the fast

time t=Vtd. The mean value of the fast motion is

cav= s1 /2pde0
2pcdt=0. Substituting x=X+c in Eq. s1d we

obtain the following set of equations of motion:

Ẍ + dẊ + sv0
2 + 3bcav

2 + 5gcav
4 dX + sb + 10gcav

2 dX3

+ gX5 + bcav
3 + gcav

5 = f cos vt , s3d

c̈ + dċ + v0
2c + 3bX2sc − cavd + 3bXsc2 − cav

2 d

+ bsc3 − cav
3 d + 5gX4sc − cavd + 10gX3sc2 − cav

2 d

+ 10gX2sc3 − cav
3 d + 5gXsc4 − cav

4 d + gsc5 − cav
5 d

+ 10gX2cav
2 = g cos Vt , s4d

where cav
i = s1 /2pde0

2pcidt, i=1,2 , . . . ,5. Because c is as-

sumed to be rapidly varying we approximate Eq. s4d as

c̈=g cos Vt by treating c̈@ ċ ,c ,c2 ,c3 ,c4 ,c5. We obtain

c=−sg /V2dcos Vt, cav=0, cav
2 =g2 / s2V4d, cav

3 =0,

cav
4 =3g4 / s8V4d, and cav

5 =0. Then Eq. s3d becomes

Ẍ + dẊ + C1X + C2X
3 + gX5 = f cos vt , s5ad

where

C1 = v0
2 +

3bg2

2V4
+
15gg4

8V8
, C2 = b +

5gg2

V4
. s5bd

Equations s5ad and s5bd can be treated as the equations

of motion for the slow motion of a particle in the effective

potential

VeffsXd = 1

2C1X
2 +

1

4C2X
4 +

1

6gX6. s6d

Comparing Vsxd fEq. s2dg and the above VeffsXd, we infer that
the number of equilibrium states can be changed by varying

the parameters g or V. The equilibrium points about which

slow oscillations take place are given by

X1
p = 0, X2,3

p = 6 F− C2 + ÎC2
2 − 4C1g

2g
G1/2

,

s7d

X4,5
p = 6 F− C2 − ÎC2

2 − 4C1g

2g
G1/2

.

Vsxd is sid a double-well potential for v0
2,0, g.0,

b-arbitrary or v0
2,0, g,0, b.0 with b2.4v0

2g and siid a
triple-well potential for v0

2.0, g.0, b,0 with b2.4v0
2g.

Veff is sid a double-well form for C1,0, g.0, C2-arbitrary

or C1,0, g,0, C2.0 with C2
2.4C1g and siid a triple-well

potential for C1.0, g.0, C2,0 with C2
2.4C1g. Suppose

Vsxd is a double-well potential with v0
2,0, g.0, b.0 with

b2.4v0
2g, then Veff is a double-well form for C1,0, C2.0;

a single-well form for C1.0, C2.0 or C1.0, C2,0 with

C2
2,4C1g and a triple-well potential for C1.0, C2,0 with

C2
2.4C1g. Consequently, by varying g or V the number of

equilibrium points about which slow motion occurs can be

changed.

We obtain the following equation for the deviation of the

slow motion X from Xp by substituting Y=X−Xp in Eq. s5ad:

Ÿ + dẎ + a1Y + a2Y
2 + a3Y

3 + a4Y
4 + gY5 = f cos vt ,

s8ad

where

a1 = C1 + 3C2X
p2 + 5gXp4, a2 = 3C2X

p + 10gXp3, s8bd

β = γ = 1
ω2

0
= −1

x

V
(x

)

1.510.50-0.5-1-1.5

0.2
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-0.1
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β = −4
ω2

0
= 3

x

V
(x
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210-1-2

1.5

1

0.5

0

(b)(a)

FIG. 1. sad Double-well potential of the quintic oscillator for v0
2,0, b,

g.0 and sbd triple-well potential for v0
2, g.0, b,0, b2.4v0

2g /3.
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a3 = C2 + 10gXp2, a4 = 5gXp. s8cd

For f !1 we assume that uYu!1 and neglect the nonlinear
terms in Eq. s8ad. Then in the limit t→`, Ystd
=AL cossvt−fd, where

AL =
f

fsvr
2 − v2d2 + d2v2g1/2

, f = tan−1Sv2 − a1

dv
D . s9d

vr=ÎC1 if Xp=0, otherwise Îa1. We define the response

amplitude Q as

Q =
AL

f
=

1

fsvr
2 − v2d2 + d2v2g1/2

. s10d

III. RESONANCE WITH DOUBLE-WELL
POTENTIAL

In this section we analyze the vibrational resonance in

the double-well potential system with v0
2,0, b, and g.0.

For g,g0, where

g0 = V2F− b + Îb2 + s10guv0
2u/3d

5g/2
G1/2

, s11d

in Eq. s5d, C1,0, C2.0, Veff remains as a double-well po-

tential, and the slow oscillations take place around X2,3
p ,

while for g.g0 it becomes a single-well with C1, C2.0 and

the slow oscillation takes place around X1
p=0.

From the theoretical expression of Q we can determine

the values of a control parameter at which vibrational reso-

nance occurs. We can rewrite Eq. s10d as Q=1 /ÎS where

S = svr
2 − v2d2 + d2v2, s12d

and vr is the natural frequency of the linear version of the

equation of motion of slow motion in the absence of the

external force f cos vt. It is called resonant frequency sof the
low-frequency oscillationd. Moreover, vr is independent of f ,

v, and d, and depends on other parameters v0
2, b, g, g, and

V. When the control parameter g or v or V is varied the

occurrence of vibrational resonance is determined by the

value of vr. Specifically, as the control parameter g or V

varies, the value of vr also varies and a resonance occurs if

the value of vr is such that the function S is a minimum.

Thus a local minimum of S represents a resonance. By find-

ing the minima of S, the values of gVR or vVR or VVR at

which resonance occurs can be determined. For example,

vVR =Îvr
2 −

d2

2
. s13d

For fixed values of the parameters, as v varies from zero, the

response amplitude Q becomes maximum at v=vVR given

by Eq. s13d. Resonance does not occur for the parametric

choices for which vr
2,d2 /2. When v is varied from zero vr

remains constant because it is independent of v. Therefore,

resonance will take place at most one value of v. This is the

case for other forms of the potential also.

If we fix v0
2=−1, b=g=1, f =0.05, and V=10, then the

value of g0 is 65.77. In Fig. 2sad vVR versus g is plotted for

three values of d. For d=0.5, 1, and 1.5 resonance will not

occur if gP f64.3,68.6g, f59.3, 76.10g, and f49.6, 85.6g,

respectively. In Fig. 2sbd theoretical and numerically com-

puted Q are plotted for g=55 and for three values of d. The

sine and cosine components QS and QC, respectively, are

calculated from the equations

QS =
2

nT
E
0

nT

xstdsin vtdt , s14ad

QC =
2

nT
E
0

nT

xstdcos vtdt , s14bd

where T=2p /v, and n is taken as 200. Numerically com-

puted Q=ÎQS
2+QC

2
/ f is in good agreement with the theoret-

ical approximation. In Fig. 2sbd resonance occurs for d=0.5

and 1 while for d=1.5 the value of Q decreases continuously

when v is varied. Both vVR and Q at the resonance decrease

with increase in d.

We compare the change in the slow motion Xstd and the
actual motion xstd. For g=55, Veff is also a double-well po-

tential and vVR=0.815 for d=0.5. The system s1d has two
coexisting orbits and the associated slow motion takes place

around the two equilibrium points X2,3
p . This is shown in Fig.

3sad for v=0.4, 0.75, and 1.5. The corresponding actual mo-

tions of the system equation s1d are shown in Figs. 3sbd–3sdd.
For a wide range of values of v, including the value of vVR,

xstd is not a cross-well motion, that is, it is not crossing both
the equilibria sxp ,yps=ẋpdd= s60.786 15,0d. When g=90

d = 1.5

d = 1

d = 0.5

g

ω
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100500
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0
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d= 1

d= 0.5

ω

Q

210

3

2

1

0

(b)(a)

FIG. 2. sad Plot of vVR vs g for the system s1d with a double-well potential.
The values of the parameters are v0

2=−1, b=g=1, and V=10. sbd Response
amplitude Q vs v for g=55 and f=0.05. In the subplot sbd continuous

curves are a theoretical result and the painted circles are numerically com-

puted values of Q.
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FIG. 3. Phase portraits of sad slow motion and fsbd–sddg actual motion of the
double-well system for a few values of v with g=55 and d=0.5.
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.g0, Veff is a single-well potential and vVR=1.15. The slow

oscillations take place around X1
p=0 fFig. 4sadg and xstd en-

closes both the minima sx=60.786 15d and the local

maxima sx=0d of the potential for all values of v fFigs.
4sbd–4sddg.

Next, we determine gVR which are roots of Sg=dS /dg

=4svr
2−v2dvrvrg=0 with Sgg ug=gVR

.0, where vrg=
dvr

dg
. The

variation in vr with g is shown in Fig. 5. From g=g0 the

value of vr monotonically increases from 0. Consequently,

for a fixed value of v there is always one resonance at a

value of g at which vr
2=v2. Further, for g.g0, Veff is a

single-well potential and vr
2=C1. In this case an analytical

expression for gVR can be easily obtained from vr
2=C1=v2

and is given by

gVR = V2F− b + Îb2 + s10guv0
2 − v2u/3d

5g/2
G1/2

, v2 . v0
2.

s15d

For g,g0 the resonance frequency is Îa1, since C1,0. vr is

maximum at g=0 and is 1.662. This implies that for

v.1.662 the function Sg never becomes 0 and, hence, reso-

nance will not occur for any value of gP f0,g0g. For

v,1.662, Sg=0 at a value of gP f0,g0g so that there is a

resonance. The analytical determination of the roots of Sg=0

and gVR is difficult because C1, C2, and X2,3
p are functions of

g, and vr
2=a1 is a complicated function of g. Therefore, we

determine the roots of Sg=0 and gVR numerically. We ana-

lyze cases svr
2−v2d=0 and vrg=0.

In Fig. 6sad gVR computed for a range v is plotted. For

v,1.662 there are two resonances—one at a value of

g,g0s=65.77d and another at a value of g.g0, while for

v.1.662 only one resonance at a value of g.g0. The above

theoretical prediction is confirmed by the numerical simula-

tion. Figure 6sbd shows the theoretical response amplitude Q

as a function of g for a few values of v. For small values of

v the two gVR values are close to g0=65.77. As v increases

the values of gVR move away from g0. For v=2 we notice

only one resonance. In the double-resonance cases the two

resonances are almost at equidistance from g0 and the values

of Q at these resonances are the same. However, the response

curve is not symmetrical about g0. Figure 6scd illustrates the
effect of damping on resonance. gVR is unchanged by the

damping strength because Sg is independent of d. However,

Q at the resonance decreases with increase in d.

We note that in overdamped bistable systems
7,9,13

Q=1 /Îvr
2+v2, gVR is independent of v and resonance oc-

curs when the effective potential undergoes transition from a

double-well form to a single-well form. In contrast to this, in

the damped system s1d, gVR depends on v and resonance

without bifurcation of Veff is found. The mechanism of vi-

brational resonance in overdamped systems is a minimiza-

tion of the resonant frequency vr. In the underdamped quin-

tic oscillator, when g is varied, the mechanism is locally

minimizing svr
2−v2d. This happens when either the resonant

frequency is tuned to match with the low-frequency v of the
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ω = 1.15

ω = 0.9

(a)

X
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0.30.20.10-0.1

0.1

0

-0.1

ω = 0.9 (b)
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0

-10

ω = 2 (d)
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ẋ

10-1

10

0

-10

FIG. 4. Phase portraits of sad slow motion and fsbd–sddg actual motion of the
double-well system for a few values of v with g=90 and d=0.5.
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FIG. 5. vr vs g for the system s1d with a double-well potential.
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FIG. 6. sad Plot of gVR vs v for the system s1d with a double-well potential.
Theoretically and numerically calculated gVR are represented by continuous

curve and painted circles, respectively. sbd Theoretical response amplitude Q

vs g for a few values of v with d=0.3, f=0.05, and V=10. scd Q vs g for a

few values of d with v=1.25. Continuous curves are a theoretical result and

the painted circles are numerically computed values of Q.
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input signal or vrg=0 with Sgg.0. The former is the case

realized in the examples shown in Figs. 5 and 6. fThe latter
is found in the triple-well case of the system s1d and is
pointed out in Sec. IV.g When v is varied the resonant fre-

quency is unaltered and the mechanism is a minimization of

S given by Eq. s12d.
We now study the nature of the solution xstd near the two

resonances at g=38.61 and 90.59 for d=0.3 and v=1.25,

shown in Fig. 6scd. Figure 7 shows the phase portrait of
actual motion for several values of g. For g,g0=65.77 the

system s1d has two coexisting orbits. As g increases from a

small value, the size of the two orbits increases and the equi-

librium points X2,3
p , about which the corresponding slow mo-

tions take place, move toward the origin. This is shown in

Fig. 7 for g=10 and 38. For g.g0 the actual motion sas well
as the slow motiond occurs around the origin. This is shown
for g=90 and 110. The resonance at g=38.61 occurs without

a cross-well motion. On the other hand, xstd is a cross-well
orbit far before and far after the resonance at g=90.59.

We calculated the mean residence time tMR of xstd, the
average time spent by the trajectory in a well before switch-

ing to another well, in the left well and right well. As shown

in Fig. 7 two orbits coexist for g,g0=65.77. For small val-

ues of g, one orbit is confined to the left well while the other

is confined to the right well. For the starting value of g, we

have chosen the orbit completely lying in the region x.0. In

the calculation of tMR averaging is performed for 500 initial
conditions and over 1000 drive cycles of the low-frequency

force, after leaving sufficient transient motion. For g,gc
=41.6 the size of the orbit increases when the value of g

increases; however, the orbit remains in the region x.0.

Thus, for g,gc, tMR
R smean residence time in the right welld

is infinite and tMR
L smean residence time in the left welld is

zero. Figure 8 shows the plot of tMR in the two wells for
g.gc. As g increases further from gc, the orbit visits the

region x,0, but the orbit is not symmetric about the origin.

This is because slow oscillation takes place about the equi-

librium point X2
pÞ0. We can clearly notice this for the orbit

A in Fig. 7scd where g=55. Due to the asymmetry of the

orbit, tMR
R and tMR

L are different. The equilibrium point X2
p sas

well as X3
pd moves toward the origin with g, and the orbit

visits more the region in the left well. Consequently, tMR in
the right well decreases with increase in g, while it increases

in the left well. For g.g0=65.77, Veff becomes a single-well

and slow motion is about the origin. tMR in the two wells are
equal because the actual motion of the system s1d is now
symmetric about the origin. The point is that far before the

resonance sg=90.59d, tMR in the two wells are equal and are

T /2, where T=2p /V is the period of the high-frequency

force. In the stochastic resonance case, at resonance tMR in
the two wells is T /2 and after resonance it decreases with

increase in the noise intensity.

Resonance can be observed by varying also the fre-

quency V of the high-frequency force g cos Vt. VVR

are roots of SV=dS /dV=4svr
2−v2dvrvrV=0 with

SVV uV=VVR
.0, where vrV=dvr /dV. Further, for V,V0

given by

V0 = F 5gg2/2

− b + Îb2 + s10guv0
2u/3d

G1/4

, s16d

Veff becomes a single-well potential with vr
2=C1 and we ob-

tain

VVR = F 5gg2/2

− b + Îb2 + s10guv0
2 − v2u/3d

G1/4

, v2 . v0
2.

s17d

For V.V0, Veff is a double-well form with vr
2=a1 and the

analytical expression for VVR is difficult to find as in the case

of g,g0.
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ẋ

1.50-1.5

15

0

-15

B A

g = 38 (b)

x

ẋ
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FIG. 7. Phase portrait of actual motion of the double-well system for a few

values of g around the two resonances with d=0.3 and v=1.25. A and B are

two coexisting orbits.
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FIG. 8. Variation in numerically calculated mean residence time tMR of xstd
in the right well srepresented by painted circlesd and in the left well srepre-
sented by open circlesd with the parameter g. ggVR=38.61 and 90.59.
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IV. RESONANCE WITH A TRIPLE-WELL POTENTIAL

The potential of the system s1d has three wells for v0
2,

g.0, b,0, and b2.4v0
2g /3. We fix v0

2=3, b=−4, and
g=1. In contrast to the double-well case, in the triple-well

case the signs of both C1 and C2 in Eq. s5bd can be changed
by varying the parameters g or V. Consequently, the shape of

the effective potential changes from triple-well to double-

well and single-well, as indicated in Table I.

In the triple-well potential, also for fixed values of g and

d, the value of v at which resonance occurs is given by Eq.

s13d. When Veff becomes a triple-well form slow oscillations

take place around X1
p=0 and X4,5

p . Figure 9sad shows the

variation in vVR with g for V=10 and for three values of d,

where slow motions around X4,5
p are considered for the triple-

well form of Veff. For a fixed value of g, vVR decreases with

increase in d. For d=2.5 and gP f54.02,99.54g and f141.33,
179.44g, resonance does not occur when v is varied because

vr
2−d2 /2,0 in the above regions of g. Figure 9sbd shows Q

versus v for several values of d where g=125. As d in-

creases the value of Q at resonance decreases. For g,78.76,

in addition to the two slow motions around X4,5
p , there is also

another slow motion around X1
p=0. vVR versus g for this

orbit is shown in Fig. 9scd. For d=2.5 resonance with this

orbit does not occur when v is varied.

Next, we analyze the occurrence of resonance as g is

varied. For g.g0=160.60 the analytical expression for gVR
is given by Eq. s15d, with uv0

2−v2u replaced by uv0
2u+v2, and

the restriction v2.v0
2 is not required. For g,g0 the reso-

nance frequency vr=Îa1 swe consider the orbits around X4,5
p

in the case of a triple-well form of Veffd is a complicated

function of g and, hence, we determined gVR numerically

from Eq. s12d. Figure 10 depicts gVR versus v. Curves a–f

are obtained from the following cases:

• Curve a: C1,0, C2.0. gVR is given by Eq. s15d with

uv0
2−v2u replaced by uv0

2u+v2;

• Curve b: C1,0, C2.0, and vr
2−v2=0;

• Curve c: C1,0, C2.0, and vrg=0;

• Curve d: C1,0, C2,0 and vr
2−v2=0;

• Curve e: C1.0, C2,0, C2
2.4c1g, and vr

2−v2=0;

• Curve f: C1.0, C2,0, and vrg=0.

We point out that a resonance with vrg=0 is not possible

in the double-well Duffing oscillator fEq. s1d with v0
2,0,

b.0, and g=0g. The various curves in Fig. 10 can be un-

derstood from the plots of vr and vrg versus g sFig. 11d.
From Fig. 11 we infer the following:

sid As in the double-well case in the triple-well system,

also as g increases beyond g0, the value of vr continu-

ously increases from 0, and thus there must be one

sand only oned resonance at a value of g greater than

g0. The resulting gVR is the curve a in Fig. 10.

siid The plot of vr has a local minimum at g=g2=70.4

and a local maximum at g=g3=122.4. vrg=0 at these

two values of g. The calculation of Sgg indicates that

Q is maximum at g2 for v,vr1=1.137 and at g3 for

v.vr2=2.02. Curves f and c represent these two val-

ues of g.

siiid For 0,v,vr1=1.137 there are three resonances.

First resonance occurs at g=g2 due to vrg=0. Second

and third resonances occur in the intervals fg4 ,g0g and
fg0 ,g5g, respectively, due to vr

2−v2=0. In Fig. 12sad

TABLE I. Nature of the effective potential Veff and the sign of C1 and C2 for

various ranges of g /V2 for v0
2=3, b=−4 and g=1.

Range of g /V2 Sign of C1 and C2 Type of Veff

0,g /V2,0.7876 C1.0, C2,0, C2
2.4C1g Triple-well

0.7876,g /V2,0.8945 C1, C2,0 Double-well

0.8945,g /V2,1.6061 C1,0, C2.0 Double-well

g /V2.1.6061 C1, C2.0 Single-well
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FIG. 9. sad vVR vs g for the system s1d with triple-well potential. The

associated slow motions are around X4,5
p . The values of the parameters are

v0
2=3, b=−4, g=1, and V=10. sbd Variation in Q with v for g=125,

f=0.05 and for several values of d. scd vVR vs g for the slow motion around

X1
p=0.
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FIG. 10. Plot of gVR vs v for the system s1d with the triple-well potential.
The values of the parameters are v0

2=3, b=−4, g=1, and V=10. gVR is

independent of d. Two, three, and four resonances occur in the intervals of v

marked as R2, R3, and R4, respectively. For more details see the text.
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for v=1, as g is varied, resonance occurs at g=70.4,

156, and 168.

sivd For vr1,v,vr2=2, vr=v at four values of g, one in

each of the intervals fg1 ,g2g, fg2 ,g3g, fg3 ,g4g, and
fg5 ,g6g. An example of four resonances is shown in
Fig. 12sad for v=1.25.

svd For vr2,v,vr3=3.464, in addition to the resonance

at g3=122.4, two more resonances occur–one in the

interval f0,g1g and another in the interval fg6 ,g7g. An
example is shown in Fig. 12sbd with v=2.

svid For v.vr3 two resonances occur—one at g=g3 and

another at a value of g.g7. In Fig. 12sbd for v=5, the

resonance at g3=122.4 is too weak and not visible in

the scale used.

For v=1.25, d=0.3 four resonances occur at g=60.47,

80.77, 150.65, and 170.61. For g.g0=160.6 the slow oscil-

lation takes place around the origin, while for other values of

g the center of the orbit moves toward the origin as g in-

creases toward g0. Figure 13 shows the phase portrait of the

actual motion of the system at four resonances. The triple-

well potential has three minima at x=61.732 05, 0 and two

maxima at x=61. In Fig. 13sad at g=gVR=60.47 xstd
crosses the right-well local minimum and not crosses the

middle-well minimum. For g values around g=gVR=150.65

xstd encloses the minima of the right wells and middle wells
but not crosses the left-well minimum fFig. 13scdg. Figure 14
shows the variation in mean residence time tMR of xstd in the
three wells. At four resonances tMR of the three wells are not
identical.

V. CONCLUSION

We have analyzed the occurrence of vibrational reso-

nance in the quintic oscillator with double-well and triple-

well forms of the potential. The effective potential of the

system allowed us to obtain an approximate theoretical ex-

pression for the response amplitude Q at the low-frequency

v. From the analytical expression of Q we determined the

values of v and g at which vibrational resonance occurs. In
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FIG. 11. Variation in sad the resonant frequency vr and sbd vrg with the

control parameter g for the system s1d with the triple-well potential. vrg=0

at g=70.4 and 122.4.
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the double-well and triple-well cases when v is varied, we

found either no resonance or only one resonance depending

on the values of the other parameters of the system. As g is

varied we have the following results. sid In the double-well
system there is always one resonance at a value of g, g.g0,

while another resonance occurs below g0 for a range of val-

ues of v, where g0 is given by Eq. s11d. siid In the system s1d
with three wells also for g.g0, there is always one reso-

nance, while for g,g0 one or two or three resonances occur

depending on the value of v. In the multiple-resonance case

the resonant frequency is a nonmonotonically varying func-

tion of the control parameter. In all the examples considered

in this paper the onset of cross-well motion is found to be not

a precursor for vibrational resonance. Further, at resonance,

tMR of xstd in the wells are not equal.

ACKNOWLEDGMENTS

The work of S.R. forms part of the Department of Sci-

ence and Technology, Government of India sponsored re-

search project. M.A.F.S. acknowledges the financial support

from the Spanish Ministry of Education and Science under

Project No. FIS2006-08525 and from the Spanish Ministry

of Science and Innovation under Project No. FIS2009-09898.

The authors are thankful to the referees for their suggestions

which improved the presentation of this paper.

1
L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys.

70, 223 s1998d.
2
P. S. Landa and P. V. E. McClintock, J. Phys. A 33, L433 s2000d.
3
M. Gitterman, J. Phys. A 34, L355 s2001d.
4
I. I. Blekhman and P. S. Landa, Int. J. Non-Linear Mech. 39, 421 s2004d.

5
A. A. Zaikin, L. Lopez, J. P. Baltanas, J. Kurths, and M. A. F. Sanjuan,

Phys. Rev. E 66, 011106 s2002d.
6
E. Ullner, A. Zaikin, J. Garcia-Ojalvo, R. Bascones, and J. Kurths, Phys.

Lett. A 312, 348 s2003d.
7
J. P. Baltanás, L. Lopez, I. I. Blechman, P. S. Landa, A. Zaikin, J. Kurths,

and M. A. F. Sanjuan, Phys. Rev. E 67, 066119 s2003d.
8
V. N. Chizhevsky and G. Giacomelli, Phys. Rev. E 70, 062101 s2004d.

9
V. N. Chizhevsky, Int. J. Bifurcation Chaos Appl. Sci. Eng. 18, 1767

s2008d.
10
V. M. Gandhimathi, S. Rajasekar, and J. Kurths, Phys. Lett. A 360, 279

s2006d.
11
V. M. Gandhimathi, S. Rajasekar, and J. Kurths, Int. J. Bifurcation Chaos

Appl. Sci. Eng. 18, 2073 s2008d.
12
J. Casado-Pascual and J. P. Baltanas, Phys. Rev. E 69, 046108 s2004d.

13
V. N. Chizhevsky and G. Giacomelli, Phys. Rev. A 71, 011801sRd s2005d.

14
V. N. Chizhevsky, E. Smeu, and G. Giacomelli, Phys. Rev. Lett. 91,

220602 s2003d.
15
T. Jüngling, H. Benner, T. Stemler, and W. Just, Phys. Rev. E 77, 036216

s2008d.
16
J. Yu, R. Zhang, W. Pan, and L. Schimansky-Geier, Phys. Scr. 78, 025003

s2008d.
17
R. Tchoukuegno, B. R. Nana Nbendjo, and P. Woafo, Physica A 304, 362

s2002d.
18
M. Siewe Siewe, F. M. Moukam Kakmeni, and C. Tchawoua, Chaos,

Solitons Fractals 21, 841 s2004d.
19
A. Yu Kuznetsova, A. P. Kuznetsov, C. Knudsen, and E. Mosekilde, Int. J.

Bifurcation Chaos Appl. Sci. Eng. 14, 1241 s2004d.
20
Z. Jing, Z. Yang, and T. Jiang, Chaos, Solitons Fractals 27, 722 s2006d.

21
M. Siewe, F. M. Moukam Kakmeni, C. Tchawoua, and P. Woafo, Physica

A 357, 383 s2005d.
22
R. Tchoukuegno, B. R. Nana Nbendjo, and P. Woafo, Int. J. Non-Linear

Mech. 38, 531 s2003d.
23
F. So and K. Liu, Physica A 303, 79 s2002d.

24
P. K. Ghosh, B. C. Bag, and D. S. Ray, Phys. Rev. E 75, 032101 s2007d.

25
E. Pollak and P. Talkner, Acta Phys. Pol. B 32, 361 s2001d.

26
M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L. Hollenberg,

and A. M. Martini, Phys. Rev. A 77, 061602 s2008d.
27
Z. L. Jia, Int. J. Theor. Phys. 48, 226 s2009d.

28
M. Siewe, H. Cao, and M. A. F. Sanjuan, Chaos, Solitons Fractals 41, 772

s2009d.

043128-8 Jeyakumari et al. Chaos 19, 043128 ~2009!

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp


